

Abstract This paper describes the application of Two-Level

Transplant Evolution (TE) that can evolve control programs using a

variable length linear genome to govern the mapping of a Backus

Naur Form grammar definition. TE combines Grammatical Evolution

(on the genotype level) with Genetic Programming (tree structures on

the phenotype level). To increase the efficiency of Transplant

Evolution (TE) the parallel Differential Evolution was added.

Keywords general controllers, optimization, two-level trans-

plant evolution.

I. INTRODUCTION

HE aim of this paper is to describe a new optimization

method that can create control equations of general

controllers. For this type of optimization a new method was

created and we call it Two-Level Transplant Evolution

(TLTE). This method allowed us to apply advanced methods

of optimization, for example direct tree reducing of tree

structure of control equation. The reduction method was

named Arithmetic Tree Reducing (ART). For the optimization

of control equations of general controllers it is suitable to

combine two evolutionary algorithms. The main goal in the

first level of TLTE is the optimization of the structure of

general controllers. In the second level of TLTE the concrete

parameters are optimized and the unknown abstract

parameters in the structure of equations are set. The method

TLTE was created by the combination of the Transplant

Evolution method (TE) and the Differential Evolution method

(DE) [8]. The Transplant Evolution (TE) optimizes the

structure of the solution with unknown abstract parameters

and the DE optimizes the parameters in this structure. The

parameters are real numbers. The real numbers are not easy to

find directly in TE without DE. Some new methods for

evaluation of the quality of the found control equation are

described here, which allow us evaluate their quality. These

can be used in the case when the simulation of the control

process cannot be finished. Some practical applications are

shown in the results. In all calculation of TLTE the control

equation had a better quality of the control process, than the

P. Osmera is with the European Polytechnical Institute Kunovice,

Kunovice, Czech Republic (e-mail: osmera@fme.vutbr.cz).

R. Weisser was with Brno University of technology, Brno, Czech Republic

He is now with seznam.cz (e-mail: roman.weisser@gmail.com).
M. Seda is with Brno University of Technology, Institute of Automation

and Computer Science, Brno, Czech Republic (e-mail: seda@fme.vutbr.cz.

J. Roupec is with Brno University of Technology, Institute of Automation
and Computer Science, Brno, Czech Republic (e-mail: roupec@fme.vutbr.cz).

classical PSD controllers and Takahashi`s modification of the

PSD controller.

II. TRANSPLANT EVOLUTION

Transplant Evolution (TE) was inspired by biological

transplantation. It is an analogy to the transplant surgery of

organs. Every transplanted organ was created by DNA

information but some parts of an ill body can be replaced by a

new organ from the database of organs. The description parts

of individual (organs) in the database are not stored on the

level DNA (genotype). In Transplant Evolution (TE) every

individual part (organ) is created by the translation of

grammar rules similar to Grammatical Evolution (GE), but

Transplant Evolution (TE) does not store the genotype and the

grammatical rules are chosen randomly. The newly created

structure is stored only as a tree. This is like Genetic

Programming (GP).

The Transplant Evolution algorithm (TE) combines the best

properties of Genetic Programming (GP) [2] and Grammatical

Evolution (GE) [4], [5], [9], [10]. The Two-Level Transplant

Evolution (TLTE) in addition to that uses the Differential

Evolution algorithm (DE). Optimization of the numerical

parameters of general controllers in recurrent control

equations of general controllers is a very difficult problem.

We applied the second level of optimization by the

Differential Evolution method (DE). The individuals in TE

and TLTE are represented only by a phenotype in the shape of

an object tree. During the initialization of population and

during the creation of these phenotypes, similar methods are

used as in GE. In Grammatical Evolution the numerically

represented chromosomes are used. The codons of these

chromosomes are used for the selection of some rule from a

set of rules. In Transplant Evolution the chromosomes and

codons are not used, but for the selection of some rule from a

set of rules randomly generated numbers are used. These

numbers are not stored in the individual chromosome. The

new individuals in the population are created with the use of

analytic and generative grammar and by using crossover and

mutation operators. These operators are projected for work

with the phenotype of an individual, similarly as in GP.

Because the individuals of TE and TLTE are represented only

by phenotype, it was possible to implement these advanced

methods in the course of evolution:

 an effective change of the rules in the course of

evolution, without the loss of generated solutions,

 a difference of probability in the selection of rules

Two-level Transplant Evolution for

Optimization of General Controllers

P. Osmera, R. Weisser, M. Seda, and J. Roupec

T

World Academy of Science, Engineering and Technology 73 2011

207

from the set of rules and the possibility of this

changing during the evolutionary process,

 the possibility of using methods of direct reduction

of the tree using algebraic operations,

 there is a possible to insert some solutions into the

population, in the form of an inline entry of

phenotype (for example: Uk-1 + Ek + Ek-1 * num),

 new methods of crossover are possible to use, (for

example crossover by linking trees)

 etc.

A. Initialization of individual

During the initialization, the generative grammar rules are

used. These rules are selected randomly from the set of rules

by the following equation:

Where: random is a pseudo-random number generator,

maxInt is a high number, % is the remainder operator

(modulus), and rules_count denotes the number of possible

rules to transcribe a given non-terminal symbol.

The algorithm TE which is described by (1) differs by the

way of initialization of individual in Grammatical Evolution

(GE). The Original initialization algorithm GE uses forward

processing of grammatical rules. In the Grammatical

Evolution the method of crossover and mutation are made on

the genotype level. The phenotype is created by a later

translation of this genotype. This way of mutation and

crossover does not allow the using of advanced method in

crossover and mutation operators, which does not destruct the

already created parts of the individual [3]. During the

evolution of this algorithm the Backward Processing of Rules

(BPR) [7] arose [11]. The BPR method uses gene marking.

This approach has the hidden knowledge of tree structure. Due

to the BPR the advanced and effective methods of crossover

and mutation can be used. Anyhow the BPR method has some

disadvantages. Due to these disadvantages the new method

Transplant Evolution (TE) was created. The TE method does

not store genotype information. The equation (1) is used for

the selection of a rule from rules base. The advantage of TE is

the possibility to use both types of grammatical processing

(forward and backward) with the same results, because TE

works only with the phenotype and the procedure of

phenotype creation is not important. Some examples of

forward and backward initializations are shown in Fig.1 and

Fig.2. The phenotype in these cases has the following structure

Uk-1 + 2* Ek + 5 * Ek-1.

In column A are shown the randomly generated gene

values. These values are not stored anywhere! The values are

generated only when is necessary to select from more

grammatical rules. In column B is shown the arithmetic

operation. In column C is shown a state of rules translation,

but it must be remembered that the translation rules is done at

the tree (in the nodes of the phenotype). In column F is the

order of operations. These numbers are used for a description

of the tree nodes initialization order. The tree initialization is

shown at column G. Each node of the tree in column G is

described by a number in the form Step X-Y. In the Step X-Y,

X represents the step in which the node was created. Y

represents the step in which the node was fully initialized

(after initialization all of its subnodes).

As you can see, the finite tree structures are the same, but

they have a different order of fully initialization. The

generated numbers in column A were changed too.

Fig. 1. Translation in GE (forward processing) [6]

 (1)

World Academy of Science, Engineering and Technology 73 2011

208

Fig. 2. Translation in GE (backward processing) [7]

Both the examples of initialization of the individual

expected generative grammar rules (productive rules) are in

prefix form. The generative grammar is defined in TABLE 1.

The rules in this table are written in Backus Naur Form (BNF)

[1]. The main principle of the initialization of individual in

Transplant Evolution is described by the recurrent pseudo-

code in Fig. 3. In this pseudo-code it can be seen that some

rules can be disabled or the probability of selection can be

changed. This possibility can be seen on row 2 in Fig. 3. The

random selection of rule from rule base are shown on row 9.

This approach is realized by the method called Get_

random_rule. The method CreateSubTree on row 11 creates

the subtree of present tree.

B. Crossover

The crossover is a distinctive tool for genetic algorithms

and is one of the methods in evolutionary algorithms that are

able to acquire a new population of individuals. The crossover

is realized in a similar way as in Genetic Programming (GP)

[2].

The TE uses three types of crossover. The first type of

crossover is named crossover the parts of trees, the second

type is named crossover of nodes, and the third type is named

crossover by linking trees. The nodes or subparts of trees in

the individuals for crossover are selected randomly.

In the case of the method crossover of nodes it is necessary

to keep change of the same types of nodes. This request is

possible to express by this relationship:

 (2)

The method of crossover by linking trees is a new method.

This method creates one offspring from two parents. The parts

of the parents are linked by the newly generated node.

The newly generated node has two subparts. The first one of

them is the tree of the first parent and the second one of them

is the tree of the second parent.

TABLE 1. Generative grammar

World Academy of Science, Engineering and Technology 73 2011

209

Fig.3. Pseudo-code of initialization of individuals

C. Mutation

Mutation is the second operator to obtain new individuals.

This operator can add new structures, which are not included

in the population so far. Mutation is performed on individuals

from the old population. The nodes in the individuals for

mutation are selected randomly. The mutation operator can be

subdivided into two types. The first type of mutation is non-

structural mutation and second type is structural mutation.

Structural mutation can be divided into shortening structural

mutation and extending structural mutation. The mutation

operator uses analytic grammar and generative grammar rules.

Non-structural mutation does not affect the structure of the

already generated individual. In the individual that is selected

for mutation, the chosen nodes of the object sub-tree are

further subjected to mutation. The mutation will randomly

change the chosen nodes, whereas the used grammar is

respected. For example it means that the mutated node, which

is a function of two variables (i.e. + -

by the node representing the function of one variable (unary

minus, etc.) or only a variable (Ek, etc.), etc. See Fig.5.

The selected node in the tree G1 is marked by an orange

color (or a different level of gray). The tree after mutation is

marked G2 and the mutated node is marked an orange color

(or different level of gray) too. The mutation was made by the

using of generative and analytic grammar. The operations with

this grammar are marked in columns A, B, C, and F. The

randomly generated value for rule selection are shown in

column A. The modulus operations are shown in column B.

The processing of rules is shown in column C.

This example assumes the generative grammar rules in

TABLE 1 and the analytic grammar rules in Table 2.

TABLE 2. Analytic grammar (non-structural mutation)

TABLE 3. Analytic grammar (extending structural mutation)

Fig. 4. Crossover by linking trees

Fig.5. Non-structural mutation

World Academy of Science, Engineering and Technology 73 2011

210

TABLE 4. Analytic grammar (shortening structural mutation)

TABLE 5. Generative grammar (expansion for analytic
grammar)

Structural mutations, unlike non-structural mutations, affect

the tree structure of individuals. Changes of the sub-tree by

extending or shortening its parts depend on the method of

structural mutations. Structural mutation can be divided into

two types: Structural mutation which is extending an object

tree structure and structural mutation which is shortening a

tree structure. In the case of the extending structural mutation,

a randomly selected node is replaced by a part of the newly

created sub-tree that respects the rules of the defined grammar

[11, [12]. Conversely the shortening structural mutation

replaces a randomly selected node of the tree, including its

child nodes, by a node which is described by a terminal

symbol (i.e. a variable or a number). This type of mutation can

be regarded as a method of indirectly reducing the complexity

of the object tree [12].

On this figure there are presented two trees, which are

marked G1 and G2. In the case of the shortening mutation the

mutation is done from tree G1 to tree G2, through the

operations which are shown in columns A, B, C, and F (above

the arrows). In the case of the extending mutation the mutation

is done from tree G2 to tree G1, through the operations which

are shown in columns A, B, C, and F (under the arrows). The

randomly generated values for selection of the rules are shown

in column A, the arithmetic operation modulus is shown in

column B, the processing of rules is shown in column C, and

the order of operation is shown in column F.

The operator of the structural mutation in Table 5 assumes

the analytic grammar and generative grammar rules from

tables Table 3, Table 4, and Table 1.

III. TWO-LEVEL TRANSPLANT EVOLUTION

The Two-Level Transplant Evolution (TLTE) is a new type

of evolutionary algorithm that performs the optimization of

structure in the first level and the parameters in the structure

are optimized in the second level of optimization. The

optimization of structure is realized by the Transplant

Evolution (TE) and the optimization of abstract numerical

parameters are realized by the Differential Evolution (DE) [6],

or some other algorithm for numerical parameters

optimization. Joining the two evolution algorithms has the

goal to eliminate the very hard optimization of the numerical

parameters by the grammar based evolutionary algorithms.

The DE method was chosen for high power of optimization of

the real number parameters.

The generative grammar and analytic grammar rules are

needed to be modified for the generation or mutation of

abstract numerical parameters. To these grammar rules it is

necessary to add these expansion rules.

TABLE 6. Generative and analytic grammar (expansion for
TLTE)

A. Architecture

From the implementation viewpoint, the joining of the two

evolutionary algorithms is the most difficult process. For the

best flexibility the interconnecting of three separate

computational modules that are join by an interlayer were

chosen. The interlayer mediates a communication among the

modules and prepares data in the required form. With this

implementation it is possible to use each module separately for

another optimization problem, or similarly to change some

module by another module.

B. Transplant Evolution Module

The transplant Evolution Module (MTE) (see Fig.6) ensures

optimization of the structure of controllers. The principle of

this algorithm was described in the article TLTE. Its task is to

create a population of individuals which uses generative

grammar G and analytic grammar G
-1

. This module can make

a numerical optimization of parameters in the structure

solutions too, but the quality is not so good as in the case of

the two-level structure. Optimization of the parameters is

provided by the Differential Evolution Module (MDE). The

agent for the communication between these layers is the

Interlayer, which is responsible for preparing the data in the

desired form for each module. The input parameters for the

MTE are the generative grammar rules P and the analytic

grammar rules P
-1

, which leads to the evolution of individuals

(solutions). The output parameter of the MTE is a fully

optimized solution that includes both the appropriate structure,

and its parameters.

C. Differential Evolution Module

The Differential Evolution Module (MDE), see Fig. 6 ensures

the optimization of abstract parameters in the structure of the

individual. The principle function of Differential Evolution

(DE) is explained for example in [8]. This module is activated

by the Interlayer, which gives it the vector of variables as one

of the input parameters. The number of parameters of this

vector is equal to the number of variables, which was included

in the structure of the solutions that came from the MTE. The

output parameter MDE is the optimized vector of parameters

that is sent into the Interlayer.

World Academy of Science, Engineering and Technology 73 2011

211

D. Fitness Module

The fitness Module (FM), see Fig. , provides an evaluation of

the models. The model is some structure of the solutions,

including some parameters. This model, together with the

controlled system is the input of simulation. For a given

controller and controlled system, the simulation of regulation

is started. The quality of model is included in the fitness

function after the finishing of the simulation. The evaluated

model is send to the Interlayer.

E. Interlayer

The Interlayer, see Fig. 6 is the most important part in the

whole architecture of Two-Level architecture. The Interlayer

is the main module, which holds instances of all the

computational modules. The interlayer provides

communication among the computational modules through the

communication interface. This module contains the knowledge

about the strategy of optimization so this means what to be

optimized and how to optimize it. The interlayer controls the

parameters of all the computational modules (MTE, MDE, and

FM), for example: size of populations TE or DE, number of

generations, type of selection methods, set of probability of

crossover and mutation, etc. The interlayer makes the

communication with an Output Module (OM). The OM is a

graphical output, which shows the evolution outputs,

simulation of control outputs, etc. The most important task of

the interlayer is data preparation in the correct form during the

communication among the computational modules, for

example during the request for fitness evaluation, see Fig. 6.

From this perspective, the tasks can be divided as follows:

 To create the vector of symbolic variables for MDE

during the communication with MTE.

 The abstract variables will be set by concrete

optimized parameters in abstract variables after the

finishing of the optimization.

 To send a full model of the solution (structure +

parameters) to the FM, during the request of the MTE

for the calculation of the quality of an individual,

Fig. 6. Architecture and data flow in TLTE

World Academy of Science, Engineering and Technology 73 2011

212

 which does not include any abstract parameter.

IV. FITNESS CRITERIONS

Considering the uses of the transplant evolution for the

optimizing of the general controller, the fitness function was

experimentally defined as the multi-criteria function of:

 Integral criterions: , ,

,

 , (3)

 The count of extremes of controlled variable

 Average control error at the end of desired value interval

 A ratio of the number of points in the control error

tolerance to the total number of points

 A ratio of the length of the curve of the controlled

variable to the length of the curve of the desired variable

 Maximal absolute overshoot of controlled variable

 Maximal absolute overshoot of manipulated variable

The target of optimization is to minimize the ITAE,

minimize the count of extremes of controlled variable, to

maximize the number of points within the control error

tolerance, minimize the maximal overshoot of the manipulated

variable and controlled variable.

The fitness criterions are shown on Fig. 7.

V. RESULTS

We tested the TLTE method for the optimization of the

recurrent equation of general controllers [11], [12]. Here there

are some results of the optimization for the following system.

A. Integral system with a transport delay

 (4)

In Fig.8 we compare 3 types of controllers. There is one

PSD controller marked PSD_DE and two general controllers

marked General_DE and General_TLTE. The curve marked

PSD_DE is the PSD controller. The parameters (Kr, Ti, Td) of

this controller were optimized by Differential Evolution (DE).

The curve marked General DE is for the general controller

which has the control equation in PSD equation form, but the

parameters q0, q1, q2 were optimized directly by DE. The

relation between q0, q1, q2 and Kr, Ti, Td is described in [11].

The curve marked General_TLTE is for the general controller

with a general control equation that was optimized by Two-

Level Transplant Evolution (TLTE). As you can see, the best

result is given by the General_TLTE.

Fig. 2. Step response for integration system with time delay

Fig. 7. Fitness criterions of control process

World Academy of Science, Engineering and Technology 73 2011

213

In this case we receive the recurrent control equation with

the following form:

Uk = (Ek_5+(((-((Ek_5*(-4.692)) - (- (((Yk*5.148) *

Yk_3*1.596))+((Ek_5+22.28)*Ek_2))*(Uk_2*(-3.809E-

6)))))+((11.943*Ek)+(((-0.3224)*Uk_3)+((-18.54)

*Ek_2))))+(Ek_1+(-0.003999))))

VI. CONCLUSION

The Two-Level Transplant Evolution (TLTE) was

successfully used for the automatic generation of control

programs of general controllers. We tested this algorithm on

many problems, only two examples were described in this

paper. We hope that this new method of controller design will

be used in practice, not only for simulation.

ACKNOWLEDGMENT

This work has been supported by the Czech Ministry of

Education No: MSM 00216305529 Intelligent Systems in

REFERENCES

[1] Backus, J. W., et al. ALGOL-like Languages. Volume 1.

Cambridge, MA, USA: Birkhauser Boston Inc., 1997.

Revised report on the algorithmic language ALGOL 60, p.

19-49.

[2] Koza J.R., Genetic Programming: On the Programming of

Computers by Means of Natural Selection, The MIT Press,

1992

[3] Popelka O. 2009: Parallel

grammatical evolution for circuit optimization, in Proc.

WCECS, World Congress on Engineering and Computer

Science, San Francisco, 1032-1040.

[4] Li Z. and Halang W. A. and Chen G. 2006: Integration of

Fuzzy Logic and Chaos Theory; paragraph: Osmera P.:

Evolution of Complexity, Springer, 527 578.

[5] , A.: Grammatical Differential

Evolution, In Proc. International Conference on Artificial

Intelligence (ICAI'06) CSEA Press Las Vegas, Nevada.

[6]

Evolutionary Automatic Programming in an Arbitrary

Language Kluwer Academic Publishers.

[7] Popelka, O.: Parallel Grammatical Evolution for Circuit

Optimization. In: Proceedings of MENDEL 2007, Prague,

Czech Republic, pp. 88 92 (2007)

[8] Price K. Differential evolution: a fast and simple numerical

optimizer, Biennial Conference of the North American

Fuzzy Information Processing Society, 1996, NAFIPS,

IEEE Press, New York, NY, 524-527.

[9]

Conference on Information Sciences. Salt Lake City. Utah.

July 21-25, 2005.

[10] Rukovansk

Computer Network Based on Parallel EA. In Proceedings

of the World Congress on Engineering and Computer

Science WCECS 2009, San Francisco, CA, Oct. 20-22, 2009,

Vol. II, pp. 1038-1043

[11] W eda, M., K , O. Transplant

Evolution for Optimization of General Controllers. In

European Conference on Modelling and Simulation. 24th.

Kuala Lumpur (Malaysia) : ECMS 2010. s. 250 -- 260.

[12] W P., Two-level Tranpslant Evolution,

In East West Fuzzy Colloquium, 17th Zittau Fuzzy

Colloquium 2010

Fig.8. Step response for integration system with time delay

World Academy of Science, Engineering and Technology 73 2011

214

